
prin - an alternative to Matlab's sprintf and fprinf functions

To view this document type prin (i.e. with no arguments) at the Matlab command prompt.

Introduction
Matlab’s sprintf and fprintf functions behave almost exactly like the identically named functions from the standard C
library. The advantage of these two formatting functions is that they are familiar to most programmers. They have
been widely used since they were created in the late 1960’s with roots from Fortran a decade earlier. However these
functions are somewhat mismatched to Matlab since it is a higher level language designed for rapid prototyping
compared to the lower level system programming C language.

(Because sprintf and fprintf use the same output formatting rules, for brevity in what follows only the function sprintf
will be mentioned). Here are the sprintf shortcomings that inspired me to create prin, a more powerful output
formatting function for Matlab:

The floating point conversions employed by sprintf (%f, %e, %g) allow one to request a specific precision
(number of digits in total, or number of digits after the decimal point) as well as a field width (length of the
output character string). Often there is a disparity between the precision and the field width, which sprintf
resolves by giving priority to the precision. This means conversions never output more precision than
requested even if that is possible given the field width. Likewise the conversions never produce less than the
requested precision even if the output must exceed the field width. This convention is fine for systems
programming and even for most scientific programming; However it can be frustrating to use for GUI
programming where one often has graphic objects that can accommodate a limited number of characters.
Another situation where these conversions are problematic is when one is creating a numerical table that
must have aligned fixed-width columns. In these situations we need to give priority to the field width, which
is not possible with sprintf.

Complex numbers are used extensively in nearly all scientific programming, which explains why Matlab’s
most primitive data type is the complex number or complex array. Yet when one passes a complex number to
sprintf, the imaginary part is ignored ̶ a behavior that is rarely desired.

Matlab programmers often view vectorization as the most important programming style to increase Matlab
program efficiency, compactness, readability, and development speed. However the lack of repeat counts or
other vector operators in sprintf format strings inhibits vectorization.

Matlab programming makes heavy use of its native cell array data type, which is not native to the C language
and is not supported by sprintf. Cell arrays of strings are used for some Matlab graphical objects and for
nearly every collection of graphical objects, but creating these strings using sprintf is cumbersome. sprintf
also does not allow a cell array as an input argument.

Often one wants to save a collection of numbers or strings contained in an array or cell array to a file in
human readable form (i.e. a text file), and normally this requires separate statements for opening the file
(fopen), saving the contents and finally closing the file (fclose). In complex situations these individual steps
may be warranted, but often this amounts to needless extra work. It would be preferable to have an I/O
interface that allowed all three of these steps to be completed in a single statement.

In the remainder of this document I describe how I address each of these concerns with the prin command which is
intended as a replacement for both sprintf and fprintf. My goal is to improve the productivity of Matlab programmers
by simplifying the most common output formatting tasks. I have been using prin for long enough now that I think I
have arrived at something that should be part of the Matlab language. If the Mathworks shares this view, let me
know. I would be pleased to transfer the source code copyright to the Mathworks if they were interested in making
prin a part of their standard Matlab release.

Version: 27-Mar-2023

Calling sequence

prin is called just like sprintf, i.e.: str = prin('FormatString',OptionalArguments);
OR the same as fprintf: str = prin(FileID,'FormatString',OptionalArguments);

Floating point conversions
When a floating point number must be displayed inside a graphical element such as an edit box, the GUI layout
limits how many characters it can contain. Attempting to go beyond that limit can produce an illegible display
(chopping off part of the exponent for example). The concept of fixed width output is demonstrated first by
considering the following table produced by prin:

 24.9688 6.02e23 4.03723 55.0913
 1.01582 652.682 648.450 52.6309
 0.12785 4.2e-11 2.62447 26.1841
 1.67417 596.219 7.05377 3.48e-4
 455.854 330.960 .019674 2.59148
 28.4859 14.2515 25672.3 0.11407
 2.94343 65.8804 4.247e7 1.17610
 16.2275 96.6397 34476.4 216.765
 9.37267 36.6329 0.69132 429.560
 2.04876 4.80613 2.20573 1.33834
 28.0669 9.17463 6219.46 6.16408

You may not actually want to format a table like this, but the values in this table are destined to appear at various
times in a small GUI edit box that has room for only 7 characters. This table shows how prin could format this data
to fit inside the edit box. Note that the typical values in this particular data set are in the range from 1 to 10,000 but
the data set a large dynamic range because of occasional outliers. It's this large dynamic range which makes it nearly
impossible to use the conventional sprintf formatting strings for such a task. For instance, let's try to use the '%g'
format for this. With some experimentation, you will find that the best you can do with this format is to print only
one significant digit, (i.e. '%7.1g') since otherwise the output would sometimes exceed 7 characters and the most
important part of the exponent would get chopped off. Using the '%7.1g' format on the data that produced table 1
above would produce table 2 below (a very disappointing result).

2e+001 6e+023 4 6e+00 24.97 6.022e23 4.037 55.09
 1 7e+002 6e+002 5e+00 1.016 652.7 648.5 52.63
 0.1 4e-011 3 3e+00 0.1279 4.238e-011 2.624 26.18
 2 6e+002 7 0.0003 1.674 596.2 7.054 0.0003478
5e+002 3e+002 0.02 3 455.9 331 0.01967 2.591
3e+001 1e+001 3e+004 0.1 28.49 14.25 2.567e+004 0.1141
 3 7e+001 4e+007 1 2.943 65.88 4.247e+007 1.176
2e+001 1e+002 3e+004 2e+002 16.23 96.64 3.448e+004 216.8
 9 4e+001 0.7 4e+002 9.373 36.63 0.6913 429.6
 2 5 2 1 2.049 4.806 2.206 1.338
3e+001 9 6e+003 6 28.07 9.175 6219 6.164

Suppose in an attempt o get a reasonable precision we accept a smaller font size and expand the edit box to 11
characters instead of just 7. So now we can try the '%11.4g' format, which results in table 3 shown above.

Although all the numbers are readable, that is about the best you can say for it. Despite the extra space we have
allotted it still rarely shows as much precision as the original 7 character display from prin in table 1. Even worse is
that sometimes the result is down right ugly. For example the 3.448e+004 in row 8 could be displayed more
readably and more precisely without exponential notation (i.e. 34476.42) and the 0.0003478 in row 4 would be

–-------------------------- Table 2 --------------------------- --------------------------------- Table 3 ---------------------------------

Table 1

easier to interpret in exponential notation (i.e. 3.478e-4). Of course you could try using a mixture of %f, %e, and
%g formats but even after hours of experimentation you will likely remain unsatisfied with the results. The sprintf
formats are simply unsuitable for this task. If you have used these formats a lot, you probably have often been
frustrated with the tradeoffs involved in other situations as well. A main goal of prin is to remove this source of
frustration.

prin accepts all the sprintf format specifiers along with 4 new ones to get around these limitations. The first of these
is %W (stands for the “Width” format) which strengthens the field width specification of the familiar %e, %f, %g
formats. With the e,f,g formats we specify the precision and accept whatever field width (i.e. # of characters) that
sprintf produces. But with the %W format we do it the other way around. We specify the desired width and prin
determines the maximum precision possible while satisfying the width specification. For example, the format '%7W'
tells prin to output no more than 7 characters while giving us as much precision as possible. Note that with this
format, prin may sometimes output fewer than 7 characters. The '%7V'format is similar to '%7W'except that in this
case prin outputs exactly 7 characters … never fewer … never more! That's why the %V format is so useful for
creating straight columns of numbers. (In fact the '%7V' format was used to create table 1 above.)

prin also includes two more formats called %v and %w which differ from their upper case counterparts in only one
respect. For the lower case formats, prin does NOT count a decimal point when determining field width. For example
'%7v' will output 7 characters if a decimal point is not needed, but will output 8 characters if a decimal point
appears in the output. This may seem a strange way to count, but it is an advantage when the characters are displayed
in a proportional width font (common for GUI objects). In those fonts the decimal point is quite narrow compared to
the other characters and we can take advantage of this to output somewhat better precision. In fact the %w format is
usually the best choice for displaying numbers in a graphical object.

There are two optional modifiers (+/-) for the %W format that allow the output to be padded with blanks. This
applies only to the situations when the %W format outputs fewer characters than the field width (which doesn’t
happen with %V). This example demonstrates the three ways you can pad the output to the desired number of
characters:

prin(' [%5W] [%-5W] [%+5W] [%5V] ',37,37,37,37)

ans = [37] [37···] [···37] [37.00] (note: The red dots represent spaces)

As you can see, the first format used above (%5W) outputs only two characters despite the 5 character field width
specification. The remaining three format specifications, demonstrate the three ways to expand this to 5 characters:

%-5W Pad on right with blanks
%+5W Pad on left with blanks
%5V Pad with non blank characters

The +/- modifiers may be used with the %w format as well, although I'm not sure that is very useful. With the %V
format, the precision is increased until the width specification is satisfied, so generally there is no need to pad the
output with blanks. However there are four special values with fixed precision (zero, NaN, Inf, -Inf) where padding
with blanks is appropriate, which means the +/- modifiers only effect the output for those four values as follows:

'[%6V]' '[%-6V]' '[%+6V]'

0 [0] [0] [0.0000]

NaN [NaN] [NaN] [NaN]

Inf [Inf] [Inf] [Inf]

-Inf [-Inf] [-Inf] [-Inf]

One final point to mention with the new floating point formats is that the field width is optional. If omitted, the
default field width of 7 is used. So for example %v and %7v are equivalent, as are %+W and %+7W.

Formating complex numbers
In sprintf all the number conversions ignore any imaginary component. By default prin does the same thing, however
with prin you may use the j or J modifier to convert complex quantities. (At least for engineers, the letter “j” should
be easy to remember since they typically use that letter to represent √-1). The upper case modifier (J) will always
print both the real and imaginary parts of the number even if one or both of them are zero, whereas the lower case
modifier (j) will print only the nonzero components. The separator used between the real and imaginary parts is
either a plus or a minus sign surrounded by a single space on both sides.

The “k” or “K” modifiers behave similarly except that the spaces in the separator mentioned above are not included.
(You may want to remember this by assuming that the K modifiers are more “Kompact”.)

You may use the J/K modifiers with any numeric conversion code (even the integer %d format). The following table
should make the behavior of these modifiers more clear. In this table, we have assumed that:

z = [3.2+4.56i, 3-4i, 6, -2i, 2i, 0];

prin('%J6.3f\n',z) prin('%K4W\n',z) prin('%k4W\n',z) prin('%j4W\n',z) prin('%J+4W\n',z)

 3.200 + 4.560i 3.2+4.56i 3.2+4.56i 3.20 + 4.56i 3.2 + 4.56i

 3.000 + 4.560i 3-4i 3-4i 3 - 4i 3 - 4i

 6.000 + 0.000i 6+0i 6 6 6 + 0i

 0.000 - 2.000i 0-2i -2i -2i 0 - 2i

 0.000 + 2.000i 0+2i 2i 2i 0 + 2i

 0.000 + 0.000i 0+0i 0 0 0 + 0i

When using a J/K modifier and a +/- modifier at the same time, the J/K modifier must come first (as shown in the
last column of this example).

Repeating format blocks
Especially for those of you who remember the repeat counts allowed in Fortran formatting commands it may be
particularly annoying to write repetitive sprintf formats such as:

sprintf('%s: %6.4gK -> %6.4gK -> %6.4gK -> %s','TestB',pi,9/7,8/7,'complete')
ans =
 TestB: 3.142K -> 1.286K -> 1.143K -> complete

Annoyingly, we needed to repeat the same conversion code and delimiters three times. If we really wanted to avoid
repeating that portion of the format string, we could use repmat to do the repeat for us (although I don't think this is
much of an improvement):

sprintf(['%s:' repmat(' %6.4gK ->',1,3) ' %s'],'TestB',pi,9/7,8/7,'complete')

prin makes this much easier by providing “numbered repeats” allowing us to create the same output string this way:

prin('%s: 3{ %6.4gK ->} %s','TestB',pi,9/7,8/7,'complete')

The number in front of the brace is called a repeat count and must be one or two digits long. A repeat count of zero
has the effect of commenting out a formatting section. There are no restrictions on what can be inside a numbered
repeat. It may include any number of formatting codes (%), or even no formatting codes at all. A numbered repeat
may even contain other numbered repeats and in fact you may nest them as deeply as you need. Numbered repeats
may also contain vector formats which are described next.

Note that in the prin command above, the “3” in front of the brace was needed because otherwise prin wouldn’t
know how many values from the argument list it should apply to the repeat block. However if the values are
contained in an array instead then we don’t need the “3” because prin will know to apply the repeat block to every
element of the array. We call this type of repeat block a vector format because when paired with a vector argument, it
will be used repeatedly for every element of the vector. For example, this command outputs the same string as
before:

prin('%s: { %6.4gK ->} %s','TestB',[pi 9/7 8/7],'complete')

(Note that we now have a vector in the argument list which we didn’t have before.) It would still work to put the “3”
in front of the above command (turning the vector format back into a numbered repeat) but it is better to use the
vector format when possible because then we don’t need to change the format string when the vector changes length.

The vector format has two additional restrictions (neither of which are restrictions of the numbered repeat:

1. There must be exactly one formatting code (%) inside the vector format. If this condition is not satisfied, the
left and right braces are treated as ordinary characters and are passed to the output stream without any special
processing. The braces are also treated as ordinary characters if the left brace is preceded by either a
backslash character (\), a caret character (^) or an underscore (_) character even if the expression in braces
otherwise meets the restrictions of a vector format. The last two exception are useful because TeX processing
uses braces to enclose a group of sub-scripted (_) or super-scripted (^) characters.

2. Other repeat groups (vector formats or numbered repeats) are not allowed inside a vector format. However as
mentioned above, a numbered repeat may have any number of vector formats and other numbered repeats
inside it, and in fact these may be nested to any depth.

The ! character has a special meaning when it is inside a numbered repeat or a vector format. It terminates the output
early on the last iteration. This may seem arcane at first, but you will soon see how often this feature is needed.

As an example consider the following prin statement (which includes a vector format) and it’s result:

prin('{area %c + } = %W square miles','Q'+(0:3),pi/3)

ans =
area Q + area R + area S + area T + = 1.0472 square miles

Obviously this is not quite what we wanted. The plus sign serves as a delimiter between each element of the character
vector, but we don’t want the last plus sign. Now the usefulness of the ! feature becomes clear:

prin('{area %c! + } = %W square miles','Q'+(0:3),pi/3)

ans =
area Q + area R + area S + area T = 1.0472 square miles

If a two dimensional array argument is used, the elements will be processed column-wise (i.e. if A is a matrix, then
supplying A in the argument list is equivalent to supplying A(:) in the argument list).

Cell array support

sprintf does not support cell arrays as input arguments, nor can it produce cell arrays as output. prin does not suffer
either of those deficits.

When prin encounters a cell array as one of its optional arguments, it sequences thru the elements of the cell array
columnwise as if each element of the cell array were in the argument list individually. The cell arrays may even be
nested. For example, these two prin commands do the same thing:

prin(‘fmtString’,a,{{b c} d; e {f;g}},h)
prin(‘fmtString’,a,b,c,e,d,f,g,h)

If the order of the variables in the second line was a surprise to you, remember that a cell array is processed
column-wise.

The ability of prin to output cell array’s of strings is even more important since such cell arrays have many uses in
Matlab graphical programming. Creating such objects with sprintf often requires awkward loops.

You tell prin to output a cell array of strings by using two special sequences of 4 characters (one for a row delimiter
and the other for a column delimiter). These two sequences were selected because it would be unlikely to want to
include either of these sequences in a character string:

Row delimiter: ' ~, '
Column delimiter: ' ~; '

For example the statement prin('aaa ~, bb ~, c') returns the cell array {'aaa' 'bb' 'c'}.

The statement prin('AA ~, BB ~; 33 ~, 44') returns this 2x2 cell array:

{'AA' 'BB';
 '33' '44'}

and the statement prin('Line%d ~, Line%d ~, Line%d ~, Line%d',3:6)

outputs the cell array {'Line3' 'Line4' 'Line5' 'Line6'}

Notice that the above statement is repetitive, which is why vector formats were created, so instead we can write:

prin('{Line%d! ~, }',3:6)

The construction above turns out to be quite common, so an alternate and somewhat less cryptic method is available
using the row delimiter as follows:

prin('{Line %d!row}',3:6)
ans =
 'Line 3' 'Line 4' 'Line 5' 'Line 6'

And likewise, the transpose of this result is output using the col delimiter:

prin('{Line %d!col}',3:6)
ans =
 'Line 3'
 'Line 4'
 'Line 5'
 'Line 6'

As another example, suppose you wanted to create the text box shown to the right.
This could be done with sprintf as follows:

uicontrol('style','text','position',[80 20 50 180],...
 'string',reshape(sprintf('Line %2d',1:12),7,12)');

However using cell arrays and prin, this could be done with less mental gymnastics:

uicontrol('style','text','position',[80 20 50 180],...
 'string',prin('{Line %2d!row}',1:12));

File handling

str = prin(fid, FormatString, OptionalArguments)
prin may contain an additional input argument (fid) specifying the file identifier, in which case it behaves like
fprintf in that the generated string is written to the a file. (The generated string is also returned in str.) Normally
fid will be the number returned from an fopen command, although as with fprintf using 1 or 2 as the fid refers to
the standard output device and standard error device respectively. (Both of those devices are redirected to the Matlab
command window and are distinguished by the text color). Here is an example of the use of the fid parameter:

fid = fopen('file1.txt','wt');
prin(fid,'15{-} Line %d 15{-}\n',35:39);
fclose(fid);

This creates a file called file1.txt containing the following text:

--------------- Line 35 ---------------
--------------- Line 36 ---------------
--------------- Line 37 ---------------
--------------- Line 38 ---------------
--------------- Line 39 ---------------

The same file would be created if you replaced prin with fprintf and if you replaced the two numbered repeats in the
format string with 15 dashes. Since three line sequences similar to this are common, prin provides a way to write this
in one line:

prin(-'file1.txt','15{-} Line %d 15{-}\n',35:39);

The leading minus sign in front of the file name tells prin to use the 'wt' permission in the file open, which means
the file is flushed before the write operation begins. (For a full discussion of the file permissions, type
help fopen). If you don't want the file to be flushed (i.e. append mode) use a plus sign instead of the minus sign.
(This tells prin it should use the 'at' file permission):

prin(+'file1.txt','15{-} Line %d 15{-}\n',35:39);

If you don't want the file1.txt file to be created in the current directory, the file name in quotes may include a full or
relative path.

Actually the calling sequence is more general that what is indicated above in that prin allows you to specify multiple
file names in the argument list. Consider the following example:

fid = fopen('file1.txt','wt');
prin(1,2,fid,-'file2.txt',+'../file3.txt','15{-} Line %d 15{-}\n',35:39);

This will write the same 5 lines shown above (Line 35 to Line 39) to the standard output and standard error devices
as well as three different files. file3.txt will be written in append mode to the parent of the current folder while
file1.txt and file2.txt will be written to the current folder and will be flushed before the operation. prin closes file2.txt
and file3.txt, but will not close file1.txt since it was opened outside the call to prin. You might guess that the plus
sign in front of '../file3.txt' in the above example can be omitted, but this is not correct. This is because
prin assumes that the first character string in the argument list is the format string, so without the plus sign, the file
name would be interpreted as a format string.

As another example, suppose you wanted to create a file with three lines:

prin(-'foo.txt','Line1\nLine2\nLine3\n');

That would do it of course, but suppose that you needed to write the 3 lines in different parts of your program. The
three lines you would need would be:

prin(-'foo.txt','Line1\n');
prin(+'foo.txt','Line2\n');
prin(+'foo.txt','Line3\n');

The first line creates the file and the next two lines append to it. This is probably the best solution because it is so
simple however the following method is somewhat more concise and efficient:

prin(-' foo.txt','Line1\n');
prin(0,'Line2\n');
prin(-1,'Line3\n');

That’s more efficient is because the file doesn’t have to be opened and closed for each line. The space before the file
name in this example tells prin to exit without closing the file. The next line uses fid=0 which is a special fid that
basically means “use the same file as with the previous prin statement”. The last line uses fid=-1 which behaves the
same as fid=0 except that the file is closed when prin exits. If you find this sequence too cryptic, rest assure that the
efficiency gained by this method would rarely be noticed. Or of course if you prefer to use the traditional Matlab and
C form of file handling, the following five lines are equivalent to the 3 lines above:

fid = fopen('foo.txt','wt');
prin(fid,'Line1\n');
prin(fid,'Line2\n');
prin(fid,'Line3\n');
fclose(fid);

Escape sequences
As with sprintf, to pass a % character to the output you must use %% since otherwise it will be treated as a format
code. (Likewse %%%% will pass %% to the output stream). In addition to the sprintf escape sequences (\n,\r,\
t,\b,\f,\\) which pass linefeed, carriage return, tab, backspace, formfeed, and backslash characters respectively,
prin also supports the \{ and \} escape sequences which pass a brace to the output stream without interpreting it as
a numbered repeat or a vector format. In the unlikely event that you need to include the ! character inside a
numbered repeat or vector format without it being interpreted as a delimiter, use its octal ascii code sequence (\41).
In the even more unlikely event you need to pass one of the length 4 strings ' ~, ' or ' ~; ' without them
being interpreted as cell array delimiters, replace the tilde character with its octal ascii code sequence (\176).

str = Pftoa(format string, number)
Pftoa is a subroutine used internally by prin to implement the new V,v,W,w formats as well as the complex
modifiers J,j,K,k. Normally you won't call Pftoa directly since calling it thru prin is more general and just as
concise. Normally Pftoa must include exactly two arguments, but there is one exception. The command:

Pftoa('test')

or equivalently:

Pftoa test

will create a test file called PftoaTest.txt. Looking at the examples in this text file may help you better understand the
differences between the four new format specifiers.

Vector pretty printing
This is the one feature of prin that is not directly related to sprintf or fprintf, although it still involves number
formatting (primarily for use in the Matlab command window).

Suppose you have created a length 23 row vector as follows:

a = 1e4*rand(1,23).^9;

Then if you type disp(a) or simply type a without the semicolon on the command line, the response in the
command window will be something like this:

1.0e+003 *
Columns 1 through 9
 0.0000 0.0991 3.9154 5.6960 0.0000 0.0142 0.0015 0.0297 0.0001
Columns 10 through 18
 0.0000 0.0057 0.0000 0.0000 6.5874 0.0051 7.0272 0.8704 0.0000
Columns 19 through 23
 0.3110 0.4355 0.1936 0.0478 0.0000

Matlab is trying to be helpful by removing a factor of 1000 so the vector elements are small enough that exponential
notation is not needed for the individual elements of the vector. However in this example dividing the data by 1000
proves to be counter productive because of the loss of precision. Several of the vector elements are even displayed as
zero even though they are not. If you have used Matlab for long, I’m certain this has sometimes annoyed you.

If instead of disp(a) if you type prin(a), the result (which I’m sure you will find more useful) is:

 ans=
 1: 1.89e-4 99.1048 3915.38 5696.01 .01267 14.2188 1.50247 29.6716 .06417 3.26e-7
 11: 5.73204 1.45e-3 5.6e-11 6587.39 5.08903 7027.19 870.403 6.2e-16 311.03 435.481
 21: 193.561 47.8239 .01117

After using this often, you may find that the ‘ans=’ that appears on the first line annoying. If so, you can send the
result directly to the console (command window) and then suppress the output of the command with a semicolon at
the end, as in:

prin(1,a);

This form is so commonly used that the function pp is included (i.e. pretty print) so that you can concisely type:

pp(a)

The output from the pretty print function is the same as above except you won’t see the ‘ans=’ in front and it doesn’t
matter if you follow the command with a semicolon or not. (The result will be the same either way.)

If you type pp(a') to pretty print the column vector, it will be sent to the console in exactly the same way, whereas
disp(a') will send the 23 element column vector to the console using 23 separate lines. That can be especially
annoying if you display say a 1000 element column vector since you can no longer find your command window
history without excessive scrolling. The pp function avoids that problem except for truly massive arrays.

You can also use the pretty printer for matrices. For example try b = 1e4*rand(3,23).^9;
Then pp(a) will produce the following output:

 1: 2180.28 1.23e-3 0.27298 2.52e-3 6.0398 3.18296 105.157 4.24e-5 4.44457 .059142
 11: 5146.69 72.5938 7128.46 .019167 307.332 8968.94 4420.43 .057915 1.65e-4 218.147
 21: 488.604 0.51955 2.3e-10
 1: 4.03e-3 .016431 4880.03 4067.46 2.58e-5 93.319 465.599 0.17805 22.4741 1357.58
 11: 591.122 .023846 43.7016 15.9574 2.36847 1.55e-9 1285.64 0.53649 528.02 17.5759
 21: 4020.75 397.075 699.112
 1: .015333 5.65817 5.04778 8318.23 .050764 .058596 .012963 0.33994 2.45e-6 1.6e-10
 11: 15.8728 9.01626 28.3503 143.561 1.22079 3336.04 8.90e-6 309.753 1.80e-5 1057.05
 21: 3536.38 4.64e-3 19.5391

and pp(a') will produce:

 1: 2180.28 4.03e-3 .015333
 2: 1.23e-3 .016431 5.65817
 3: 0.27298 4880.03 5.04778
 4: 2.52e-3 4067.46 8318.23
 5: 6.0398 2.58e-5 .050764
 6: 3.18296 93.319 .058596
 7: 105.157 465.599 .012963
 8: 4.24e-5 0.17805 0.33994
 9: 4.44457 22.4741 2.45e-6
10: .059142 1357.58 1.6e-10
11: 5146.69 591.122 15.8728
12: 72.5938 .023846 9.01626
13: 7128.46 43.7016 28.3503
14: .019167 15.9574 143.561
15: 307.332 2.36847 1.22079
16: 8968.94 1.55e-9 3336.04
17: 4420.43 1285.64 8.90e-6
18: .057915 0.53649 309.753
19: 1.65e-4 528.02 1.80e-5
20: 218.147 17.5759 1057.05
21: 488.604 4020.75 3536.38
22: 0.51955 397.075 4.64e-3
23: 2.3e-10 699.112 19.5391

Try disp(a’) and disp(a’) to remind yourself how annoying the result can be, not to mention you will likely
see 10 or more zeros in the display despite the fact that none of the elements are actually zero. Note that in the output
for pp(a') above, there are no column or row prefixes in the output. That’s because these prefixes are suppressed
for matrices with fewer than 11 columns and with vectors with fewer than 11 elements.

The leading row or column number followed by the colon is suppressed for row or column vectors with fewer than
11 elements, and for matrices it is suppressed if there are fewer than 7 rows and fewer than 11 columns. So for
example if m = magic(4).^8; then pp(m) will output:

4.295e9 256 6561 8.157e8
 390625 2.144e8 1.000e8 1.678e7
4.305e7 5764801 1679616 4.300e8
 65536 1.476e9 2.563e9 1

And again, I can’t help my amusement with the useless response to disp(m) which shows 3 zero elements:

1.0e+09 *

 4.2950 0.0000 0.0000 0.8157
 0.0004 0.2144 0.1000 0.0168
 0.0430 0.0058 0.0017 0.4300
 0.0001 1.4758 2.5629 0.0000

Note that 7 characters (followed by two spaces) are used to represent each vector element and that 10 elements are
displayed in each row. These are default settings which may be modified if your preferences are different. Suppose
for example that you prefer to use 8 characters instead of 7 for each vector element. You could change the vector
pretty printing output to 8 characters by entering either of these commands:

prin({8})
prin({'+8%W '});

Then first form is more concise, but the second form gives you more flexibility since you can also change the number
format and the delimiter used between vector elements. Suppose in addition to changing the number of digits you
also want to change the number of entries displayed per row from 10 to 9. This can be done by entering the following
command to set the settings cell array:

prin({8 9});

Note that the first element of the settings cell array is the number of characters, and the second element is the number
of entries per row. After this command, the output from prin(a) will ave one more digit of precision than before:

 1: 1.893e-4 99.10485 3915.384 5696.011 .0126704 14.21883 1.502471 29.67157 .0641702
 10: 3.259e-7 5.732044 1.451e-3 5.63e-11 6587.39 5.089026 7027.19 870.4027 6.25e-16
 19: 311.03 435.4814 193.561 47.82391 .0111701

The third and final entry in the settings list is the row label format. The row labels show the index of the first vector
element in each row. The default is '%3d: ', meaning 3 digits followed by a colon and a space. As an example
suppose we wanted to use 12 characters per entry, with 5 entries per row and that we did not want to show the index
number in the row label but wanted to begin each row with an arrow. Since the %0W format prints zero digits we
could accomplish this by setting the defaults as:

prin({12 5 '%0W--> '});

Since we have specified 12 characters and 5 elements per row, the new output from prin(a) would be:

--> 1.8934327e-4 99.104849053 3915.3835586 5696.0109002 .01267043214
--> 14.218831103 1.5024712018 29.671566662 .06417017391 3.2588139e-7
--> 5.7320436178 1.4509102e-3 5.634157e-11 6587.3896588 5.0890256433
--> 7027.1900456 870.40272925 6.249913e-16 311.03002409 435.48144883
--> 193.5609704 47.823907577 .01117010966

The vector pretty printing settings remain in effect for the remainder of the Matlab session but returns to the default
settings when Matlab is restarted. You also may return to the default settings by using the command:

prin({});

Although vector pretty printing is usually used for the command window, you could also send the output to a file
(named aData.txt in this example) with the command:

prin(-'aData.txt',a);

Or if for example you wanted to send the pretty print output to a listbox you could convert the resulting multi-line
character string to a cell array of strings by replacing the newline characters with the cell array delimiter, as in:

t = prin(a);
set(ListBoxHandle,'string',prin(strrep(t(1:end-1),char(10),' ~, ')));

Note that in the above line, the last character of the t character array (which is always a newline character)
was excluded. This was done to avoid inserting an extra blank line at the end of the listbox.

Examples
If you want to see more examples of the use of prin, you can find many of them in my file exchange submission
called “Sigplt”. prin is used several times in each of the following programs from that toolbox:

sig folder: afilt, editz erip, series, weight, winplt
math folder: airspeed, carlo, circles12, gauss, gpsLog, julia, motion
demo folder: demoplt, gui1, movbar, picplot, plt50, pltmap, pltn, pub0, trigplt, wfall, xChart

I hope using prin and pp enhances your Matlab experience. Please let me know about
any prin related questions or suggestions. You can reach me at paul@mennen.org

Copyright © 2023
Paul Mennen

	prin - an alternative to Matlab's sprintf and fprinf functions
	Introduction
	Calling sequence
	Floating point conversions
	Formating complex numbers
	Repeating format blocks
	Cell array support
	File handling
	str = prin(fid, FormatString, OptionalArguments)

	Escape sequences
	str = Pftoa(format string, number)
	Vector pretty printing
	Examples

